OXIDATION OF 3d TRANSITION METALS BY MoF₆ AND WF₆ IN ACETONITRILE AND SOME REACTIONS OF THE SOLVATED CATION PRODUCTS

N. Prouff, R. M. Siddique* and J. M. Winfield Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (U.K.)

One way of generating solvated metal cations in acetonitrile is to oxidize the metal with MoF₆ or WF₆. In many cases these reactions are rapid and are thus good synthetic routes to the cations $[M(NCMe)_{6}]^{2+}$, M = Fe, Co, Paradoxically, Cu and Zn. The oxidation of nickel is an exception however. massive nickel (powder or wire 99.99%) reacts with WF6 in MeCN at room temperature but not with MoF6, although the latter is the stronger oxidizing MoF, does react when degassed nickel is evaporated in vacuo onto a agent. Pyrex surface but under these conditions no reaction is observed using WF_{6} . A possible explanation for these observations is that the oxide film on Ni passivates the metal to MoF₆ reaction, while it can be partially removed using the stronger Lewis acid WF₆. The reduction products in these reactions are MoF_6 or mixtures of WF_6 and WF_7 ; the oxidation product is $[Ni(NCMe)_6]^{2+}$. Generation of $[M(NCMe)_6]^{2+}$ cations under strictly anhydrous conditions allows reactions to be performed which would be difficult or impossible with water [Fe(NCMe)₆]²⁺ forms high-spin [Fe(NCMe)₅(NMe₃)]²⁺ with NMe₃ in MeCN present. This undergoes stepwise substitution reactions with P(OMe), giving, finally, low-spin $[Fe(NMe_2){P(OMe)_2}]^{2+}$. Steric factors appear to be important, as the intermediate steps differ from those observed previously between [Fe(NCMe)₆]²⁺ and P(OMe)₃. In contrast, NMe₃ is oxidized by [Cu(NCMe)₆]²⁺, probably via an intermediate $[Cu(NCMe)_{6-x}(NMe_3)_x]^{2+}$, and similar behaviour is observed between $[Cu(NCMe)_{\beta}]^{2+}$ and $Me_{2}S$.

Financial support from the Governments of Algeria (to N.P) and Pakistan (to R.M.S) is gratefully acknowledged.